Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Aliakbar Dehno Khalaji, ${ }^{\text {a }}$ Mehdi Amirnasr ${ }^{\mathrm{a}}$ and Jean-Claude Daran ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran, and
${ }^{\mathbf{b}}$ Laboratoire de Chimie de Coordination, CNRS UPR8241, 205 Route de Narbonne, 31077 Toulouse Cedex, France

Correspondence e-mail: daran@lcc-toulouse.fr

Key indicators

Single-crystal X-ray study
$T=180 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.032$
$w R$ factor $=0.069$
Data-to-parameter ratio $=28.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Bis[N, N^{\prime}-bis(3,3-diphenylprop-2-enylidene)-ethane-1,2-diamine- $\left.\kappa^{2} N, N^{\prime}\right] \operatorname{copper}(\mathrm{I})$ triiodide

The title complex, $\left[\mathrm{Cu}\left(\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{~N}_{2}\right)_{2}\right] \mathrm{I}_{3}$, contains cations having Cu^{1} coordinated by four N atoms of two N, N^{\prime}-bis(3,3-diphenylprop-2-enylidene)ethane-1,2-diamine (Phca 2 en) ligands in a distorted tetrahedral fashion and isolated linear $\mathrm{I}_{3}{ }^{-}$anions. The Phca ${ }_{2}$ en ligand adopts a Z, Z conformation and acts as a bidentate ligand coordinating via two N atoms to the Cu atom. The Cu and central I atoms are located on twofold axes.

Comment

The structural and spectroscopic properties of many Cu^{I} complexes with bidentate Schiff base ligands have been increasingly studied over recent years (Amirnasr et al., 2006; Khalaji et al., 2006). Depending on the ligands involved, Cu^{I} complexes can show a wide variety of structures (Kickelbick et al., 2002, 2003; Zhou et al., 2006). In this context, we decided to examine the nature of a Cu^{I} complex formed with an unconjugated diimine ligand. The title complex, (I), was prepared by reacting the bidentate ligand N, N^{\prime}-bis $(\beta$-phenyl-cinnamaldehyde)-1,2-diiminoethane ($\mathrm{Phca}_{2} \mathrm{en}$) with CuI .

(I)

The asymmetric unit of (I) contains a $\left[\mathrm{Cu}\left(\mathrm{Phca}_{2} \mathrm{en}\right)_{2}\right]^{+}$ cation, shown in Fig. 1, and a linear triiodide anion. The Cu and central I atoms are located on twofold axes. Four N atoms of the Phca_{2} en ligands are coordinated to the Cu^{I} centre. The Phca_{2} en ligand chelates the Cu^{I} atom to form a five-membered ring, with $\mathrm{N}-\mathrm{Cu}-\mathrm{N}=83.67(11)^{\circ}$, which is in good agreement with the corresponding angles in related complexes (Amirnasr et al., 2006; Khalaji et al., 2006). The $\mathrm{Cu}-$ $\mathrm{N}\left(\mathrm{Phca}_{2} \mathrm{en}\right)$ distance of 2.023 (2) \AA is similar to those in the pseudotetrahedral (diimine) Cu^{I} complexes (Amirnasr et al., 2006; Kickelbick et al., 2002, 2003; Khalaji et al., 2006;

Received 26 October 2006
Accepted 27 October 2006

Dehghanpour \& Mojahed, 2006). The I-I distance of 2.9182 (3) \AA is similar to that observed in the complex $\left[\mathrm{Mn}(\text { phen })_{3}\right]\left[\mathrm{I}_{3}\right]_{2}(2.9255 \AA$; Horn et al., 2002).

Experimental

The N, N^{\prime}-bis(β-phenylcinnamaldehyde)-1,2-diiminoethane ligand, Phca ${ }_{2}$ en, was prepared as reported elsewhere (Amirnasr et al., 2002). Compound (I) was prepared by the reaction of CuI with Phca_{2} en (molar ratio 1:1) in acetonitrile solution at 298 K . The resulting darkred precipitate was filtered off and dried under vacuum. Dark-red crystals of (I) were obtained by the slow diffusion of $\mathrm{Et}_{2} \mathrm{O}$ vapour into an acetonitrile solution of the complex at 298 K .

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{~N}_{2}\right)_{2}\right] \mathrm{I}_{3}$	$D_{x}=1.558 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=1325.38$	Mo $K \alpha$ radiation
Tetragonal, $P \overline{4} n 2$	$\mu=2.07 \mathrm{~mm}^{-1}$
$a=17.1304(7) \AA$	$T=180(2) \mathrm{K}$
$c=9.6273(4) \AA$	Prism, dark red
$V=2825.1(2) \AA^{3}$	$0.4 \times 0.38 \times 0.32 \mathrm{~mm}$

Data collection

Oxford Diffraction XCALIBUR diffractometer
 φ and ω scans
 Absorption correction: multi-scan
 (CrysAlis RED; Oxford
 Diffraction, 2006)

Refinement

```
Refinement on }\mp@subsup{F}{}{2
R[\mp@subsup{F}{}{2}>2\sigma(\mp@subsup{F}{}{2})]=0.032
wR(F}\mp@subsup{F}{}{2})=0.06
S=1.10
4 7 3 5 \text { reflections}
165 parameters
H-atom parameters constrained
w=1/[\mp@subsup{\sigma}{}{2}(\mp@subsup{F}{\textrm{o}}{2})+(0.0211P)}\mp@subsup{}{}{2
    +1.9967P]
    where }P=(\mp@subsup{F}{\textrm{o}}{2}+2\mp@subsup{F}{\textrm{c}}{2})/
```

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances of 0.95 (aromatic H) or $0.99 \AA$ (methylene H) and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII

Figure 1
The structure of the $\left[\mathrm{Cu}\left(\mathrm{Phca}_{2} \mathrm{en}\right)_{2}\right]^{+}$cation of (I), with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms and the $\mathrm{I}_{3}{ }^{-}$anion have been omitted for clarity. [Symmetry codes: (i) $-x,-y, z$; (ii) $\frac{1}{2}+y, \frac{1}{2}+x, \frac{1}{2}-z$; (iii) $\left.\frac{1}{2}-y, \frac{1}{2}-x, \frac{1}{2}-z\right]$.
(Burnett \& Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Amirnasr, M., Kickelbick, G. \& Dehghanpour, S. (2006). Helv. Chim. Acta, 89, 274-732.
Amirnasr, M., Mahmoudkhani, A. H., Gorji, A., Dehghanpour, S. \& Bijanzadeh, H. R. (2002). Polyhedron, 21, 2733-2742.
Bernardinelli, G. \& Flack, H. D. (1985). Acta Cryst. A41, 500-511.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Dehghanpour, S. \& Mojahed, F. (2006). Anal. Sci. 22, x81-x82.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Horn, C., Berben, L., Chow, H., Scudder, M. \& Dance, I. (2002). CrystEngComm, 4, 7-12.
Khalaji, A. D., Amirnasr, M. \& Welter, R. (2006). Anal. Sci. 22, x49-x50.
Kickelbick, G., Amirnasr, M., Khalaji, A. D. \& Dehghanpour, S. (2002). Acta Cryst. E58, m381-m382.
Kickelbick, G., Amirnasr, M., Khalaji, A. D. \& Dehghanpour, S. (2003). Aust. J. Chem. 56, 323-328.

Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED (Version 1.171.31.5). Oxford Diffraction Ltd., Abingdon, Oxfordshire, England.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Zhou, X.-H., Wu, T. \& Li, D. (2006). Inorg. Chim. Acta, 359, 1442-1448.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

